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Abstract 

In Part I (Rodriguez, et al., 2013 an optimization model was proposed to redesign the supply chain of 
spare parts industry under demand uncertainty in a specified planning horizon. To address large industrial 
problems, a Lagrangean scheme is proposed to decompose the MINLP of Part I according to the 
warehouses by dualizing the logic constraints that assign the warehouses to different customers, together 
with the demand constraints and factory capacity constraints. The subproblems are first approximated by 
an adaptive piece-wise linearization scheme that provides lower bounds, and the MILP is further relaxed 
to an LP to improve solution efficiency while providing a valid lower bound. An initialization scheme is 
designed to obtain good initial Lagrange multipliers, which are scaled to accelerate the convergence. The 
results from an illustrative problem and two real world industrial problems show that the method can 
obtain optimal or near optimal solutions in modest computational times. 
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1. Introduction 

In the spare parts industry, or more specifically the electric motor industry as was illustrated in part 1 
(Rodriguez et al, 2013)  there are some key issues that strongly influence the cost of the supply chain. 
One is that a low-level inventory is important (bound capital). Moreover, it is critical that a spare motor 
can be obtained as soon as possible since the motor is a key part of the customer plant. Tens or hundreds 
of different types of motors are required by the customers. Also, the criticality of a given unit can be very 
different. If the time requirement is very tight, it might be necessary to have some motors in stock at the 
customer sites. The main objective of the model is to optimally redesign supply chain to meet the demand 
with minimal costs involving decisions on where to place warehouses, which installed warehouses should 
be expanded or shutdown, as well as deciding the stock capacities, safety stocks required, and how to 
connect the different echelons of the supply chain in order to satisfy uncertain demand of motors. Due to 
the above features, the problem corresponds to a large scale MINLP problem that is very hard to solve. 



Lagrangean decomposition has been successfully applied to many large-scale mathematical programming 
problems (Wang, 2003). According to the problem structure, temporal and spatial decomposition can be 
adopted (Terrazas-Moreno, et al. 2011). The subgradient optimization is a popular method for updating 
the multipliers in Lagrangean decomposition (Baker and Sheasby, 1999), although the convergence of 
the multipliers is the main challenge. Other contributions include methods for accelerating convergence 
through the use of subgradients (Baker and Sheasby, 1999; Fumero, 2001) and other strategies (Buil, et 
al. 2012). In Terrazas-Moreno et al. (2011), an economic interpretation of the multipliers is given, which 
can benefit from the problem structure to accelerate the convergence. Considering that the dual problem is 
a high-dimensional nonlinear problem, the shape of its domain and contours is a key to accelerate the 
convergence, and the interpretation from an economic view may be helpful. 

This paper is organized as follows. In section 2, the model from Part I is reformulated. In section 3, a 
decomposition scheme is proposed, and the methods to solve subproblems, initialize and update 
multipliers, and design of the feasibility problem are discussed. The results from an illustrative example 
and two real world industrial problems are shown and discussed in section 4. Finally, some conclusions 
are drawn in section 5. 

2. The supply chain model reformulation 

In order to design the decomposition algorithm, we reformulate the model from Part I to aggregate the 
terms in the objective and constraints according to the warehouses for which we consider potential 
selection, capacity expansion and shutdowns. In the reformulated model, we assume for simplicity that no 
factory expansion and shutdown are considered. That is, all the necessary factories are given with fixed 
capacities at the beginning of time horizon for the design of the supply chain. 

Firstly, the cost terms (Equations (54), (56), (58), (60), (62)-(70) from Part I) are disaggregated in the 
objective function (Eq. (72) from Part I) in terms of the warehouses j, as follows. 

𝑇𝐼𝑡 = ∑ 𝑇𝐼𝑡𝑗𝑗      ∀𝑡     (1) 

where 𝑇𝐼𝑡𝑗 denotes the total investment cost in new warehouse 𝑗 in period t. 

𝑇𝑂𝐹𝑡 = ∑ 𝑇𝑂𝐹𝑡𝑗𝑗     ∀𝑡     (2) 

where 𝑇𝑂𝐹𝑡𝑗 denotes the total operational fixed cost in warehouse 𝑗 in period t. 

𝑇𝐸𝑡 = ∑ 𝑇𝐸𝑡𝑗𝑗                                                       ∀𝑡                                                              (3) 

where 𝑇𝐸𝑡𝑗 denotes the total investment expansion cost in warehouse 𝑗 in period t. 

𝑇𝑈𝑡 = ∑ 𝑇𝑈𝑡𝑗𝑗  ∀𝑡                                             ∀𝑡                  (4) 

where 𝑇𝑈𝑡𝑗 denotes the total shutdown cost in warehouse 𝑗 in period t. 

𝑇𝑂𝑉𝑡 = ∑ 𝑇𝑂𝑉𝑡𝑗𝑗     ∀𝑡     (5) 

where 𝑇𝑂𝑉𝑡𝑗 denotes the total variable cost in warehouse 𝑗 in period t. 



𝑇𝑃𝑉𝑡 = ∑ 𝑇𝑃𝑉𝑡𝑗𝑗     ∀𝑡     (6) 

where 𝑇𝑃𝑉𝑡𝑗 denotes the total variable cost in factories for the motors transported to warehouse 𝑗 in 
period t. 

𝑇𝑅𝑡 = ∑ 𝑇𝑅𝑡𝑗𝑗∈𝑆𝐶     ∀𝑡     (7) 

where 𝑇𝑅𝑡𝑗 denotes the repair cost in warehouse 𝑗 in period t. 

𝑇𝑇𝐹𝑡 = ∑ 𝑇𝑇𝐹𝑡𝑗𝑗∈𝑆𝐶 + 𝑇𝑇𝐹𝑡𝑇   ∀𝑡     (8) 

where 𝑇𝑇𝐹𝑡𝑗 denotes the transportation cost from factories to warehouse 𝑗 in period t, and 𝑇𝑇𝐹𝑡𝑇 denotes 
the transportation cost from factories to customer sites in period t. 

𝑇𝑇𝑊𝑡 = ∑ 𝑇𝑇𝑊𝑡𝑗𝑗∈𝑆𝐶 ∀𝑡    ∀𝑡     (9) 

where 𝑇𝑇𝑊𝑡𝑗 denotes the transportation cost from warehouse 𝑗 in period t.
 

𝑇𝑃𝑊𝑡 = ∑ 𝑇𝑃𝑊𝑡𝑗𝑗     ∀𝑡      (10) 

where 𝑇𝑃𝑊𝑡𝑗 denotes the mean inventory cost in warehouse 𝑗 in period t.
 

𝑇𝑃𝐶𝑡 = ∑ 𝑇𝑃𝐶𝑡𝑗𝑗 + 𝑇𝑃𝐶𝑡𝑇   ∀𝑡                                                             (11) 

where 𝑇𝑃𝐶𝑡𝑗 and 𝑇𝑃𝐶𝑡𝑇 denote the mean inventory cost at customer sites for the special motors from 
warehouse 𝑗 and tailor made motors in period 𝑡, respectively.

 
𝑇𝑆𝑆𝑡 = ��ℎ1𝑗𝑝 ∙ 𝑠𝑠𝑗𝑝𝑡

𝑝𝑗

+ �� � � ℎ2𝑘 ∙ 𝜆2𝑘𝑠 ∙ 𝜎𝑘𝑠𝑐𝑡 ∙ �𝑙′𝑗𝑘𝑠𝑐𝑡
𝑐𝜖𝐾𝑆𝐶𝑘𝑠𝑐𝑠∉𝐾𝑇𝑘𝑠𝑘𝑗

+ � � � ℎ2𝑘 ∙ 𝜆2𝑘𝑠 ∙ 𝜎𝑘𝑠𝑐𝑡 ∙ �𝑚𝑘𝑠𝑐𝑡
𝑐𝜖𝐾𝑆𝐶𝑘𝑠𝑐𝑠𝜖𝐾𝑇𝑘𝑠𝑘

 

= ∑ 𝑇𝑆𝑆𝑡𝑗𝑗 +𝑇𝑆𝑆𝑡𝑇                                                                                                                (12) 

where 𝑇𝑆𝑆𝑡𝑗  denotes the summation of the safety stock cost at warehouse 𝑗 and customer sites for the 
special motors from warehouse 𝑗 in period 𝑡, and 𝑇𝑆𝑆𝑡𝑇 denotes the safety stock cost at customer sites for 
tailor made motors in period 𝑡. 

𝑇𝐵𝑇𝑡 = �� � � 𝑏1𝑘𝑠 ∙ 0.45 ∙ 𝜎𝑘𝑠𝑐𝑡 ∙ �𝑙′𝑗𝑘𝑠𝑐𝑡
𝑐𝜖𝐾𝑆𝐶𝑘𝑠𝑐𝑠∉𝐾𝑇𝑘𝑠𝑘𝑗

∙ 𝑒
𝜆2𝑘𝑠

−0.59� ∙ χ  ∙
zjkt
𝑡2𝑗𝑘𝑠

 

= ∑ 𝑇𝐵𝑇𝑡𝑗𝑗                                                         (13) 

where 𝑇𝐵𝑇𝑡𝑗  denotes the lost sales stock cost for special motors from warehouse 𝑗 in period t. 

Equations (55), (57), (59) and (61) from Part I are not included since the factories are assumed to be given. 
We therefore include equations (1)-(13) above and (71) from part I in the objective function.  



Also, constraint (30) from part I can be rewritten as follows. 

𝑙′𝑗𝑘𝑠𝑐𝑡 ≥ 𝑠𝑗𝑝𝑡 ∙ 𝑧𝑗𝑘𝑡 + 𝑡2𝑗𝑘𝑝 ∙ 𝑧𝑗𝑘𝑡 − 𝑅𝑘𝑠𝑐                                                                              (14) 

We consider equation (14) above and equations (10)-(15), (18), (19), (24)-(29), (31)-(41), (52) and (53) 
from part I (Rodriguez, et al., 2013) as the constraints of the reformulated MINLP model. 

3. Lagrangean decomposition algorithm 

3.1 Lagrangean decomposition steps 

Based on the reformulation of the model, we decompose the problem by warehouses. This requires 
dualizing constraints (8) and (9) from Part I, as they couple the different warehouses by specifying that 
the summation of warehouses assigned to a certain customer not exceed one. Considering that the demand 
constraints and factory capacity constraints also couple the different warehouses, constraints (20)-(23) 
and (53) from Part I are also dualized. 

Hence, the Lagrangean function is as follows. 

𝐿

= �
𝑇𝐼𝑡 + 𝑇𝑂𝐹𝑡 + 𝑇𝐸𝑡 + 𝑇𝑈𝑡 + 𝑇𝑂𝑉𝑡 + 𝑇𝑃𝑉𝑡 + 𝑇𝑅𝑡 + 𝑇𝑇𝐹𝑡 + 𝑇𝑇𝑊𝑡 + 𝑇𝑃𝑊𝑡 + 𝑇𝑃𝐶𝑡 + 𝑇𝑆𝑆𝑡 + 𝑇𝐵𝑇𝑡 + 𝑇𝐵𝑆𝑡

(1 + 𝑖𝑟)𝑡
𝑡

+ 

∑ �𝜆𝑧𝑘𝑡�∑ 𝑧𝑗𝑘𝑡𝑗 − 1��𝑘𝑡 +∑ �𝜆𝑣𝑠𝑘𝑡�∑ 𝑣𝑗𝑘𝑠𝑡𝑗 − 1��𝑠𝑘𝑡 + 

∑ �𝜆𝑚𝑢𝑐𝑡𝑘𝑝𝑡 �∑ ∑ 𝜇𝑖𝑗𝑘𝑝𝑡𝑛𝑒𝑤
𝑗𝑖 + ∑ 𝜇𝑗𝑘𝑝𝑡𝑢𝑠𝑒𝑑

𝑗∈𝑆𝐶 − ∑ ∑ 𝜇𝑘𝑠𝑐𝑡𝑐∈𝐾𝑆𝐶𝑘𝑠𝑐𝑠∈𝑃𝑆𝑝𝑠
𝑠∈𝐶𝑇𝑘𝑠

��𝑘𝑝𝑡 + 

∑ �𝜆𝑚𝑢𝑐𝑡𝑘𝑝𝑡 �∑ ∑ 𝜇𝑖𝑗𝑘𝑝𝑡𝑛𝑒𝑤
𝑗𝑖 − ∑ ∑ 𝜇𝑘𝑠𝑐𝑡𝑐∈𝐾𝑆𝐶𝑘𝑠𝑐𝑠∈𝑃𝑆𝑝𝑠

𝑠∉𝐶𝑇𝑘𝑠

��𝑘𝑝𝑡 + 

∑ �𝜆𝑡𝑜𝑙𝑘𝑠𝑡�∑ τikstnew
i + ∑ τjkstused

jϵSC − ∑ µksctc∈KSCksc ��𝑡,(k,s)∈KTks + 

∑ �𝜆𝑡𝑜𝑙𝑘𝑠𝑡�∑ 𝜏𝑖𝑘𝑠𝑡𝑛𝑒𝑤
𝑖 − ∑ 𝜇𝑘𝑠𝑐𝑡𝑐∈𝐾𝑆𝐶𝑘𝑠𝑐 ��𝑡,(𝑘,𝑠)∉𝐾𝑇𝑘𝑠 + 

∑ �𝜆𝑐�∑ ∑ ∑ 𝜇𝑖𝑗𝑘𝑝𝑡𝑛𝑒𝑤 ∙ 𝛼𝑝𝑝𝑘𝑗 − 𝑞𝑓𝑖𝑡��𝑖𝑡   

≜ 𝑓�𝜆𝑧𝑘𝑡,𝜆𝑣𝑠𝑘𝑡,𝜆𝑚𝑢𝑐𝑡𝑘𝑝𝑡,𝜆𝑚𝑢𝑐𝑡𝑛𝑘𝑝𝑡,𝜆𝑡𝑜𝑙𝑘𝑠, 𝜆𝑐� 

                                                                                                                                                (15) 

where 𝜆𝑧𝑘𝑡 ≥ 0, 𝜆𝑣𝑠𝑘𝑡 ≥ 0, 𝜆𝑚𝑢𝑐𝑡𝑘𝑝𝑡,  𝜆𝑡𝑜𝑙𝑘𝑠𝑡 and 𝜆𝑐 ≥ 0 are the corresponding Lagrange multipliers. 

According to equations (1)-(13) from Part II above and (71) from Part I, equation (15) can be rewritten as 
follows 



𝐿 = ∑ �∑ 𝑇𝐼𝑡𝑗+𝑇𝑂𝐹𝑡𝑗+𝑇𝐸𝑡𝑗+𝑇𝑈𝑡𝑗+𝑇𝑂𝑉𝑡𝑗+𝑇𝑃𝑉𝑡𝑗+𝑇𝑅𝑡𝑗+𝑇𝑇𝐹𝑡𝑗+𝑇𝑇𝑊𝑡𝑗+𝑇𝑃𝐶𝑡𝑗+𝑇𝑆𝑆𝑡𝑗+𝑇𝐵𝑇𝑡𝑗
(1+𝑖𝑟)𝑡𝑡 �𝑗   

+∑ (𝑇𝑇𝐹𝑡𝑇+𝑇𝑆𝑆𝑡𝑇+𝑇𝑃𝐶𝑡𝑇+𝑇𝐵𝑆𝑡)
(1+𝑖𝑟)𝑡𝑡 + 

∑ ∑ 𝜆𝑧𝑘𝑡𝑧𝑗𝑘𝑡𝑘𝑡𝑗 − ∑ 𝜆𝑧𝑘𝑡𝑘𝑡  +∑ ∑ 𝜆𝑣𝑠𝑘𝑡𝑣𝑗𝑘𝑠𝑡𝑠𝑘𝑡𝑗 − ∑ 𝜆𝑣𝑠𝑘𝑡𝑠𝑘𝑡 + 

∑ ∑ �𝜆𝑚𝑢𝑐𝑡𝑘𝑝𝑡 �∑ 𝜇𝑖𝑗𝑘𝑝𝑡𝑛𝑒𝑤
𝑖 + �𝜇𝑗𝑘𝑝𝑡𝑢𝑠𝑒𝑑�

𝑗∈𝑆𝐶
��𝑘𝑝𝑡𝑗 − ∑ �𝜆𝑚𝑢𝑐𝑡𝑘𝑝𝑡 �∑ ∑ 𝜇𝑘𝑠𝑐𝑡𝑐∈𝐾𝑆𝐶𝑘𝑠𝑐𝑠∈𝑃𝑆𝑝𝑠

𝑠∈𝐶𝑇𝑘𝑠

��𝑘𝑝𝑡 + 

∑ ∑ �𝜆𝑚𝑢𝑐𝑡𝑘𝑝𝑡 ∑ 𝜇𝑖𝑗𝑘𝑝𝑡𝑛𝑒𝑤
𝑖 �𝑘𝑝𝑡𝑗 − ∑ �𝜆𝑚𝑢𝑐𝑡𝑛𝑘𝑝𝑡 ∑ ∑ 𝜇𝑘𝑠𝑐𝑡𝑐∈𝐾𝑆𝐶𝑘𝑠𝑐𝑠∈𝑃𝑆𝑝𝑠

𝑠∉𝐶𝑇𝑘𝑠

�𝑘𝑝𝑡 + 

∑ ∑ 𝜆𝑡𝑜𝑙𝑘𝑠𝑡τjkstused
𝑡,(k,s)∈KTksjϵSC +∑ �𝜆𝑡𝑜𝑙𝑘𝑠𝑡�∑ τikstnew

i − ∑ µksctc∈KSCksc ��𝑡,(k,s)∈KTks + 

∑ �𝜆𝑡𝑜𝑙𝑘𝑠𝑡�∑ 𝜏𝑖𝑘𝑠𝑡𝑛𝑒𝑤
𝑖 − ∑ 𝜇𝑘𝑠𝑐𝑡𝑐∈𝐾𝑆𝐶𝑘𝑠𝑐 ��𝑡,(𝑘,𝑠)∉𝐾𝑇𝑘𝑠 + 

∑ ∑ �𝜆𝑐�∑ ∑ 𝜇𝑖𝑗𝑘𝑝𝑡𝑛𝑒𝑤 ∙ 𝛼𝑝𝑝𝑘 ��𝑖𝑡 −𝑗 ∑ 𝜆𝑐𝑄𝑃𝑖𝑈𝑃𝑖𝑡                                                                        (16) 

Defining for each warehouse j 

𝐿𝑗 = �∑ 𝑇𝐼𝑡𝑗+𝑇𝑂𝐹𝑡𝑗+𝑇𝐸𝑡𝑗+𝑇𝑈𝑡𝑗+𝑇𝑂𝑉𝑡𝑗+𝑇𝑃𝑉𝑡𝑗+𝑇𝑅𝑡𝑗+𝑇𝑇𝐹𝑡𝑗+𝑇𝑇𝑊𝑡𝑗+𝑇𝑃𝐶𝑡𝑗+𝑇𝑆𝑆𝑡𝑗+𝑇𝐵𝑇𝑡𝑗
(1+𝑖𝑟)𝑡𝑡 �+ 

∑ 𝜆𝑧𝑘𝑡𝑧𝑗𝑘𝑡𝑘𝑡  +∑ 𝜆𝑣𝑠𝑘𝑡𝑣𝑗𝑘𝑠𝑡𝑠𝑘𝑡 + ∑ �𝜆𝑚𝑢𝑐𝑡𝑘𝑝𝑡 �∑ 𝜇𝑖𝑗𝑘𝑝𝑡𝑛𝑒𝑤
𝑖 + �𝜇𝑗𝑘𝑝𝑡𝑢𝑠𝑒𝑑�

𝑗∈𝑆𝐶
��𝑘𝑝𝑡 + 

∑ �𝜆𝑚𝑢𝑐𝑡𝑘𝑝𝑡 ∑ 𝜇𝑖𝑗𝑘𝑝𝑡𝑛𝑒𝑤
𝑖 �𝑘𝑝𝑡 +∑ 𝜆𝑡𝑜𝑙𝑘𝑠𝑡τjkstused

𝑡,(k,s)∈KTks jϵSC
+∑ �𝜆𝑐�∑ ∑ 𝜇𝑖𝑗𝑘𝑝𝑡𝑛𝑒𝑤 ∙ 𝛼𝑝𝑝𝑘 ��𝑖𝑡  ∀𝑗 ∈ 𝐽 

(17) 

and defining for the remaining cost terms (transportation cost for tailor made motors from factories to 
customers, safety stock cost at customer sites for tailor made motors, the mean inventory cost at customer 
sites for tailor made motors and lost sales cost for tailor made motors) and the penalty terms of the 
Lagrange multipliers except the ones involving variables 𝑧𝑗𝑘𝑡 , 𝑣𝑗𝑘𝑠𝑡, 𝜇𝑖𝑗𝑘𝑝𝑡𝑛𝑒𝑤 , 𝜇𝑗𝑘𝑝𝑡𝑢𝑠𝑒𝑑and τjkstused. 

𝐿𝑟 = ∑ (𝑇𝑇𝐹𝑡𝑇+𝑇𝑆𝑆𝑡𝑇+𝑇𝑃𝐶𝑡+𝑇𝐵𝑆𝑡)
(1+𝑖𝑟)𝑡𝑡 − ∑ 𝜆𝑧𝑘𝑡𝑘𝑡 − ∑ 𝜆𝑣𝑠𝑘𝑡𝑠𝑘𝑡 − ∑ �𝜆𝑚𝑢𝑐𝑡𝑘𝑝𝑡 �∑ ∑ 𝜇𝑘𝑠𝑐𝑡𝑐∈𝐾𝑆𝐶𝑘𝑠𝑐𝑠∈𝑃𝑆𝑝𝑠

𝑠∈𝐶𝑇𝑘𝑠

��𝑘𝑝𝑡 + 

−∑ �𝜆𝑚𝑢𝑐𝑡𝑛𝑘𝑝𝑡 ∑ ∑ 𝜇𝑘𝑠𝑐𝑡𝑐∈𝐾𝑆𝐶𝑘𝑠𝑐𝑠∈𝑃𝑆𝑝𝑠
𝑠∉𝐶𝑇𝑘𝑠

�𝑘𝑝𝑡 +∑ �𝜆𝑡𝑜𝑙𝑘𝑠𝑡�∑ 𝜏𝑖𝑘𝑠𝑡𝑛𝑒𝑤
𝑖 − ∑ 𝜇𝑘𝑠𝑐𝑡𝑐∈𝐾𝑆𝐶𝑘𝑠𝑐 ��𝑡,(𝑘,𝑠)∈𝐾𝑇𝑘𝑠 + 

∑ �𝜆𝑡𝑜𝑙𝑘𝑠𝑡�∑ 𝜏𝑖𝑘𝑠𝑡𝑛𝑒𝑤
𝑖 − ∑ 𝜇𝑘𝑠𝑐𝑡𝑐∈𝐾𝑆𝐶𝑘𝑠𝑐 ��𝑡,(𝑘,𝑠)∉𝐾𝑇𝑘𝑠 − ∑ 𝜆𝑐𝑄𝑃𝑖𝑈𝑃𝑖𝑡                                          (18) 

Then,  𝐿 = ∑ 𝐿𝑗𝑗 + 𝐿𝑟                                                                                                            (19)  



Thus, the Lagrangean function is decomposed into |𝐽| + 1 terms as 𝐿𝑗,∀ 𝑗 ∈ 𝐽 and  𝐿𝑟.We can obtain the 
subproblems denoted by 𝑃𝑗, ∀𝑗 ∈ 𝐽 and 𝑃𝑟, as follows. 

𝑃𝑗 :       min     𝐿𝑗 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 (11), (12), (14), (15), (18), (19), (24), (26)-(28), (31)-(41), (52) from Part I and (14) from this 
Part with certain 𝑗. 

𝑃𝑟 :      min     𝐿𝑟 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜  (10), (13), (25), (29) and (53) from Part I. 

Using Lagrangean decomposition , the subproblems can be solved individually for a given set of 
Lagrange multipliers. The summation of the objective values then provides a lower bound of the primal 
problem, and the multipliers can be updated according to the solutions of the subproblems. The steps of 
the algorithm are shown in Fig. 1. 

 

Figure 1 Steps of Lagrangean decomposition algorithm 

 

 

 



3.2 Solving the subproblems 

Each subproblem 𝐿𝑗, 𝑗 ∈ 𝐽 or  𝐿𝑟 is also a large scale MINLP with nonlinear terms in the objective given 
by the square roots with positive coefficients. Considering a piecewise linear approximation of the square 
roots as shown in Fig. 2, each of subproblems reduces to an MILP that provides a lower bound to the 
MINLP.  

For a square root term, 𝑦 = √𝑥, with 𝑥𝐿 and 𝑥𝑈 as the lower and upper bounds of continuous variable 𝑥 
respectively, we consider a temporal point 𝑥𝑡, with which the piecewise linear approximation is given by 
equations (20)-(22) 

𝑥 = 𝛾1𝑥𝑡 + 𝛽𝐼𝛾2𝑥𝐿 + (1 − 𝛽𝐼)𝛾2𝑥𝑈                           (20) 

𝛾1 + 𝛾2 = 1                                                                                                                           (21) 

𝑦 = 𝛾1√𝑥𝑡 + 𝛽𝐼𝛾2√𝑥𝐿 + (1 − 𝛽𝐼)𝛾2√𝑥𝑈                                                                             (22) 

where 𝛾1 and 𝛾2 are positive continuous variables, 𝛽𝐼 is a binary variable that indicates whether 𝑥 lies 
between 𝑥𝐿 and 𝑥𝑡. 

There are bilinear terms 𝛽𝐼𝛾2  in equations (20) and (22). We introduce positive continuous variables 𝑎𝐼 
and 𝑎𝐼′ as auxiliary variables, and constraints (23)-(25) as follows. 

𝑎𝐼 + 𝑎𝐼′ = 𝛾2                                                                                                                         (23) 

𝑎𝐼 ≤ 𝛽𝐼                                                                                                                                  (24) 

𝑎𝐼′ ≤ 1 − 𝛽𝐼                                                                                                                           (25) 

Then, 𝑎𝐼 = 𝛽𝐼𝛾2 . Hence, equations (20) and (22) can be rewritten as equations (26) and (27). 

𝑥 = 𝛾1𝑥𝑡 + 𝑎𝐼𝑥𝐿 + 𝛾2𝑥𝑈 − 𝑎𝐼𝑥𝑈                                                                                        (26) 

𝑦 = 𝛾1√𝑥𝑡+𝑎𝐼√𝑥𝐿 + 𝛾2√𝑥𝑈 − 𝑎𝐼√𝑥𝑈                                                                                (27) 

Thus, the square root term 𝑦 = √𝑥 can be approximated with the linear equations (21), (26) and (27). 

We adopt an adaptive scheme to update the temporal point. In the first iteration, we take 𝑥𝑡 = 𝑥𝐿+𝑥𝑈

2
, and 

in the following iterations, 𝑥𝑡 is assigned with the solutions of the previous iteration. Then, we can expect 
that 𝑥𝑡′s will converge to the optimal solution of the primal problem. 

 



 

Figure 2 Piecewise linear approximation of the nonlinear term of the subproblems 

Furthermore, considering that the approximate problems are MILP problem with 0-1 binary and 
continuous variables, we consider an LP relaxation that can provide a lower bound to the MILP, which in 
turn is a lower bound to the original MINLP.  

3.3 Feasibility scheme 

A feasible solution is necessary to update the upper bound of the primal problem and provide a candidate 
solution. With the current Lagrange multipliers, we can obtain the solutions of the subproblems. But in 
general, the solutions are not feasible for the primal problem, especially constraints (8) and (9) from Part I 
are violated, and the value of 𝑧𝑗𝑘𝑡 and 𝑣𝑗𝑘𝑠𝑡 may not be integer. Therefore, to construct a feasible solution, 
we specify 𝑧𝑗′𝑘𝑡 and 𝑣𝑗′′𝑘𝑠𝑡  with Algorithm Specify. 

Algorithm Specify 

Start; 
𝑁𝑜𝑂𝑛𝑒𝑈(𝑘, 𝑡) = 1; 
𝑁𝑜𝑂𝑛𝑒𝑉(𝑘, 𝑠𝑝, 𝑡) = 1; 
𝑙𝑜𝑜𝑝(𝑗, 
𝑧.𝑓𝑥(𝑗, 𝑘, 𝑡)$ �𝑧𝑑. 𝑙(𝑗,𝑘, 𝑡) = 𝑚𝑎𝑥𝑗′𝑧𝑑. 𝑙(𝑗′,𝑘, 𝑡)𝑎𝑛𝑑  𝑁𝑜𝑂𝑛𝑒𝑈(𝑘, 𝑡)� = 1; 
𝑁𝑜𝑂𝑛𝑒𝑈(𝑘, 𝑡)$𝑧. 𝑙(𝑗,𝑘, 𝑡) = 0; 

𝑣.𝑓𝑥(𝑗,𝑘, 𝑠𝑝, 𝑡)$ �𝑣𝑑. 𝑙(𝑗,𝑘, 𝑠𝑝, 𝑡) = 𝑚𝑎𝑥𝑗′𝑣𝑑. 𝑙(𝑗′,𝑘, 𝑠𝑝, 𝑡)𝑎𝑛𝑑  𝑁𝑜𝑂𝑛𝑒𝑈(𝑘, , 𝑠𝑝, 𝑡)� = 1; 

𝑁𝑜𝑂𝑛𝑒𝑉(𝑘, 𝑡)$𝑣. 𝑙(𝑗,𝑘, 𝑠𝑝, 𝑡) = 0; 
         ); 
End; 
 



In the algorithm, 𝑧𝑑 and 𝑣𝑑 denote the corresponding solutions of the subproblems. The algorithm means 
that we specify 𝑧𝑗1𝑘𝑡 and 𝑣𝑗2𝑘𝑠𝑡 with 1 for 𝑗1 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑗�𝑧𝑗𝑘𝑡�  and 𝑗2 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑗�𝑣𝑗𝑘𝑠𝑡� (if 𝑗1 or 𝑗2is 
not unique, we take the first one by increasing order), and specify 𝑧𝑗𝑘𝑡 (𝑗 ≠ 𝑗1) and 𝑣𝑗𝑘𝑠𝑡 (𝑗 ≠ 𝑗2) with 0. 

When 𝑧𝑗𝑘𝑡 and 𝑣𝑗𝑘𝑠𝑡 are specified with algorithm Specify, the feasibility problem reduces to an MINLP 
with binary variables, including 𝑥𝑖𝑗𝑝𝑡  and 𝑦𝑗𝑡, 𝑦𝑗𝑡𝑒 , 𝑦𝑗𝑡𝑢 , and continuous variables. The nonlinear terms 
involve square root functions.  To design an efficient feasibility scheme, we design another adaptive 
linear approximation scheme which is shown in Fig. 3 with 𝑥1𝑡 and 𝑥2𝑡 updated iteratively. 

For a square root term, 𝑦 = √𝑥, with 𝑥𝐿 and 𝑥𝑈 as the lower and upper bounds of continuous variable 𝑥, 
respectively, we consider a pair of temporal points 𝑥1𝑡 and 𝑥2𝑡. Then, the linear approximation is given by 
equation (28). 

𝑦 =
�𝑥2

𝑡−�𝑥1
𝑡

𝑥2
𝑡−𝑥1

𝑡 (𝑥 − 𝑥1𝑡) + �𝑥1𝑡                                                                                              (28) 

 

Figure 3 Linear approximation of the nonlinear term of the feasible problem 

The pair of  𝑥1𝑡 and 𝑥2𝑡 are updated adaptively as in equations (29) and (30). 

𝑥̅1𝑡 = 𝑥1𝑡 + 𝑎(𝑥𝑝 − 𝑥1𝑡)                                                                                                         (29) 

𝑥̅2𝑡 = 𝑥2𝑡 + 𝑎(𝑥𝑝 − 𝑥2𝑡)                                                                                                         (30) 

where 𝑥̅1𝑡 and 𝑥̅2𝑡 are the updated points, 𝑥𝑝 is the solution of the previous iteration, 𝑎 is a scalar in (0,1). 
Thus, we can also expect that 𝑥1𝑡 and 𝑥2𝑡 will converge to the optimal solution from opposite directions. 
Hence, we obtain an MILP problem, denoted MILPFeas as an approximate feasibility problem. By 
solving MILPFeas, we can obtain a near optimal solution, according to which we calculate the exact 
objective with the original nonlinear function, which corresponds to an upper bound to the primal 
problem. 



3.4 Multipliers initialization and update 

The appropriate multipliers of the demand constraints can help the solution of the subproblems to meet 
the demand. Furthermore, the Lagrange multipliers can be interpreted as the price of the products. 
Considering the Lagrangean function (15), if the demand is not met, a penalty will be incurred with the 
corresponding multipliers. At the same time, when the customer order is satisfied, the company has to 
incur in production cost, transportation cost, stock and repairing cost. Therefore, when the penalty and the 
cost reach a balance, the demand will be satisfied. In this way, we can estimate the multipliers of the 
demand constraints by calculating the unit cost of a feasible solution of the primal problem. Practically, 
we specify 𝑧𝑗𝑘𝑡 and 𝑣𝑗𝑘𝑠𝑡 arbitrarily to satisfy constraints (8) and (9) from Part I, and solve the feasibility 
problem. According to the solution, for each tuple (𝑘,𝑝, 𝑡) and (𝑘, 𝑠, 𝑡), we calculate a total cost 
involving the corresponding terms in equations(62)-(69) from Part I as equations (31) and (32), then 
divide the cost by the corresponding demand. This is the average variable cost of the corresponding motor 
to meet the demand, the opposite of which we take as the initial value of the corresponding multiplier. 
The other multipliers are specified with 0 as the initial value. 

𝜆𝑚𝑢𝑐𝑡𝑘𝑝0 = −⎝

⎜
⎜
⎜
⎛

∑ ∑ ∑ 𝑔𝑗 ∙ 𝜇𝑖𝑗𝑘𝑝𝑡𝑛𝑒𝑤 ∙ 𝜒𝑝𝑗𝑖 + ∑ ∑ ∑ 𝑔𝑝𝑖 ∙ 𝜇𝑖𝑗𝑘𝑝𝑡𝑛𝑒𝑤 ∙ 𝜒𝑝𝑗𝑖

+∑ ∑ 𝑔𝑟𝑗𝑝 ∙ 𝜇𝑗𝑘𝑝𝑡𝑢𝑠𝑒𝑑 ∙ 𝜒𝑝𝑗𝜖𝑆𝐶 + ∑ ∑ ∑ 𝑐1𝑖𝑗 ∙ 𝜇𝑖𝑗𝑘𝑝𝑡𝑛𝑒𝑤 ∙ 𝜒𝑝𝑗𝜖𝑆𝐶𝑖

+∑ ∑ ∑ 𝑐2𝑗𝑘 ∙ 𝜇𝑖𝑗𝑘𝑝𝑡𝑛𝑒𝑤 ∙ 𝜒𝑝𝑗𝑖 + ∑ 2 ∙ 𝑐2𝑗𝑘 ∙ 𝜒 ∙ ∑ 𝜇𝑗𝑘𝑝𝑡𝑢𝑠𝑒𝑑
𝑝𝑗𝜖𝑆𝐶

+∑ ∑ ∑ 𝜃1𝑗𝑝 ∙ 𝜇𝑖𝑗𝑘𝑝𝑡𝑛𝑒𝑤 ∙ 𝑡1𝑖𝑗𝑝𝑝𝑗𝑖 +∑ ∑ ∑ 𝜃2𝑘𝑝 ∙ 𝜇𝑖𝑗𝑘𝑝𝑡𝑛𝑒𝑤 ∙ 𝑡2𝑗𝑘𝑝𝑝𝑗𝑖

+∑ ∑ ℎ1𝑗𝑝 ∙ 𝑠𝑠𝑗𝑝𝑡𝑝𝑗 + ∑ ∑ ℎ2𝑘 ∙ 𝜆2𝑘𝑠 ∙ 𝜎𝑘𝑠𝑐𝑡 ∙ �𝑙𝑘𝑠𝑐𝑡𝑐𝜖𝐾𝑆𝐶𝑘𝑠𝑐𝑠∉𝐾𝑇𝑘𝑠 ⎠

⎟
⎟
⎟
⎞

�
∑ ∑ ∑ 𝜇𝑖𝑗𝑘𝑝𝑡𝑛𝑒𝑤

p𝑗𝑖

+∑ ∑ 𝜇𝑗𝑘𝑝𝑡𝑢𝑠𝑒𝑑
𝑝𝑗𝜖𝑆𝐶

�
 

                                                                                                                                                          (31) 

𝜆𝑡𝑜𝑙𝑘𝑠𝑡0 = −

�

∑ ∑ 𝑔𝑟′𝑗𝑠 ∙ 𝜏𝑗𝑘𝑠𝑡
𝑢𝑠𝑒𝑑 ∙ 𝜒𝑠𝜖𝐾𝑇𝑘𝑠𝑗𝜖𝑆𝐶 + ∑ ∑ ∑ 𝑐3𝑖𝑘 ∙ 𝜏𝑖𝑘𝑠𝑡𝑛𝑒𝑤 ∙ 𝜒𝑠𝜖𝐾𝑇𝑘𝑠𝑘𝑖

+∑ ∑ 2 ∙ 𝑐2𝑗𝑘 ∙ 𝜒 ∙ ∑ 𝜏𝑗𝑘𝑠𝑡𝑢𝑠𝑒𝑑
𝑠𝜖𝐾𝑇𝑘𝑠𝑘𝑗𝜖𝑆𝐶

+∑ ∑ ∑ ℎ2𝑘 ∙ 𝜆2𝑘𝑠 ∙ 𝜎𝑘𝑠𝑐𝑡 ∙ �𝑚𝑘𝑠𝑐𝑡𝑐𝜖𝐾𝑆𝐶𝑘𝑠𝑐𝑠𝜖𝐾𝑇𝑘𝑠𝑘

�

�
∑ 𝜏𝑖𝑘𝑠𝑡𝑛𝑒𝑤
𝑖

+∑ 𝜏𝑗𝑘𝑠𝑡𝑢𝑠𝑒𝑑
𝑗𝜖𝑆𝐶

�
 

                                                                                                                                                         (32) 

The subgradient optimization is a popular method to find a good set of multipliers for the Lagrangean 
relaxation (Baker and Sheasby, 1999). In our problem, a scaling scheme is applied based on the fact that 
the multipliers of the demand constraints are equivalent to a unit cost. Due to the problem size, the values 
of multipliers can reach several hundreds to more than one thousand, and the corresponding subgradients 
are of the same order. However, the subgradients of constraint (8) and (9) from Part I cannot exceed the 
number of warehouses, and the corresponding multipliers are of the same order. This fact tends to make 
the contours of the dual problem long and narrow, as illustrated in Fig. 4, making the dual problem hard 
to converge. To overcome the problem, we make all the multipliers of the same order by scaling, with 
which the contours become near circles. The scaling scheme is as follows. 



Recall that 𝐿 = 𝑓�𝜆𝑧𝑘𝑡,𝜆𝑣𝑠𝑘𝑡,𝜆𝑚𝑢𝑐𝑡𝑘𝑝𝑡,𝜆𝑡𝑜𝑙𝑘𝑠𝑡,𝜆𝑐�, and the subgradients of 𝑓 is 

𝑔 = �𝑔𝑧𝑘𝑡𝑇 ,𝑔𝑣𝑠𝑘𝑡𝑇 ,𝑔𝑚𝑢𝑐𝑡𝑘𝑝𝑡
𝑇 ,𝑔𝑡𝑜𝑙𝑘𝑠𝑇 ,𝑔𝑐𝑇�

𝑇.  

Let 𝜆𝑧𝑘𝑡 = 𝛼𝑧𝜆′𝑧𝑘𝑡, 𝜆𝑣𝑠𝑘𝑡 = 𝛼𝑣𝜆′𝑣𝑠𝑘𝑡, 𝜆𝑚𝑢𝑐𝑡𝑘𝑝𝑡 = 𝛼𝑚𝑢𝜆′𝑚𝑢𝑐𝑡𝑘𝑝𝑡, 𝜆𝑡𝑜𝑙𝑘𝑠 = 𝛼𝑡𝜆′𝑡𝑜𝑙𝑘𝑠, 𝜆𝑐 = 𝛼𝑐𝜆′𝑐, where 
𝛼∙’s are positive scalars, we can rewrite the function as 𝐿 = 𝑓′�𝜆′𝑧𝑘𝑡,𝜆′𝑣𝑠𝑘𝑡,𝜆′𝑚𝑢𝑐𝑡𝑘𝑝𝑡,𝜆′𝑡𝑜𝑙𝑘𝑠,𝜆′𝑐�. Then 

the subgradients of 𝑓′ is 𝑔′ = � 1
𝛼𝑧
𝑔𝑧𝑘𝑡𝑇 , 1

𝛼𝑣
𝑔𝑣𝑠𝑘𝑡𝑇 , 1

𝛼𝑚𝑢
𝑔𝑚𝑢𝑐𝑡𝑘𝑝𝑡
𝑇 , 1

𝛼𝑡
𝑔𝑡𝑜𝑙𝑘𝑠𝑇 , 1

𝛼𝑐
𝑔𝑐𝑇�

𝑇
. To make all the 

multipliers of the same order, we select right 𝛼∙’s according to the initialization process, then the 
multipliers are scaled with equations (33)-(37). 

 𝜆′𝑧𝑘𝑡 = 1
𝛼𝑧
𝜆𝑧𝑘𝑡                                                                                                                               (33) 

𝜆′𝑣𝑠𝑘𝑡 = 1
𝛼𝑣
𝜆𝑣𝑠𝑘𝑡                                                                                                                             (34) 

𝜆′𝑚𝑢𝑐𝑡𝑘𝑝𝑡 = 1
𝛼𝑚𝑢

𝜆𝑚𝑢𝑐𝑡𝑘𝑝𝑡                                                                                                              (35) 

𝜆′𝑡𝑜𝑙𝑘𝑠 = 1
𝛼𝑡
𝜆𝑡𝑜𝑙𝑘𝑠                                                                                                                           (36) 

𝜆′𝑐 = 1
𝛼𝑐
𝜆𝑐                                                                                                                                      (37) 

 

 

Figure 4 Contours of the dual problem 



 

3.5 Lagrangean decomposition algorithm 

In summary, the Lagrangean decomposition algorithm is given below. 

Algorithm LD 

Step 1: Transform the original MINLP into an MILP, denoted MILPWh, by approximating the square root 
terms with piecewise linear ones according to equations (21), (26) and (27), and relax all the binary 
variables to obtain an LP, denoted LPWh; Obtain subproblems 𝑃𝑗, ∀𝑗 ∈ 𝐽 and 𝑃𝑟 of LPWh by relaxing 
constraints (8) and (9) from Part I; 

Step 2: Transform the original MINLP into an MILP, denoted MILPFea, by approximating the square 
root terms with a linear approximation according to equation (28); 

Step 3: Specify 𝑧𝑗𝑘𝑡 and 𝑣𝑗𝑘𝑠𝑡 arbitrarily subject to constraints (8) and (9) from Part I, then solve MILPWh, 
and initialize the Lagrange multipliers 𝜆𝑚𝑢𝑐𝑡𝑘𝑝 and 𝜆𝑡𝑜𝑙𝑘𝑠𝑡 according to equations (31) and (32) 
respectively, initialize the other Lagrange multipliers 𝜆′𝑧𝑘𝑡,𝜆′𝑣𝑠𝑘𝑡,𝜆′𝑚𝑢𝑐𝑡𝑘𝑝𝑡,𝜆′𝑐  to 0; 

Step 3: Scale the Lagrange multipliers according to equations (33)-(37); 

Step 4: Solve subproblems 𝑃𝑗, ∀𝑗 ∈ 𝐽 and 𝑃𝑟, obtain the dual objective  𝑙𝑖𝑡 by summarizing the objectives 
of the subproblems, update the lower bound of the original MINLP with the summation of, denoted 𝑙𝑢𝑝𝑖𝑡, 
where 𝑖𝑡 denotes the iteration; 

Step 5: Call Algorithm Specify to specify 𝑧𝑗𝑘𝑡 and 𝑣𝑗𝑘𝑠𝑡 according to the solutions of the subproblems, 
then solve  MILPFea; Calculate the objective of the original MINLP according to equations (1)-(13) from 
this second Part and (71) from part I using the solutions of MILPFea, update the upper bound of the 
original MINLP, denoted 𝑓𝑢𝑝𝑖𝑡 with 𝑖𝑡 as the iteration; 

Step 6: If the convergence criterion is satisfied, stop the algorithm; otherwise, update 𝑥𝑡 in equations (20), 
(26), (27), 𝑥𝑝 in equation (28) and the scaled Lagrange multipliers 

�𝜆′𝑧𝑘𝑡,𝜆′𝑣𝑠𝑘𝑡,𝜆′𝑚𝑢𝑐𝑡𝑘𝑝𝑡,𝜆′𝑡𝑜𝑙𝑘𝑠, 𝜆′𝑐�𝑖𝑡+1 =  𝑃+𝑧𝑣𝑐 ��𝜆′𝑧𝑘𝑡,𝜆′𝑣𝑠𝑘𝑡,𝜆′𝑚𝑢𝑐𝑡𝑘𝑝𝑡,𝜆′𝑡𝑜𝑙𝑘𝑠,𝜆′𝑐�𝑖𝑡+1 +

(𝑓𝑢𝑝𝑖𝑡 − 𝑙𝑖𝑡) 𝑔′
|𝑔′|2�, where  𝑃+𝑧𝑣𝑐(∙) means projection to the space with nonnegative 𝜆′𝑧𝑘𝑡,𝜆′𝑣𝑠𝑘𝑡,𝜆′𝑐, go 

to step 4. 

4. Results 

The application of the proposed Lagrangean decomposition algorithm is shown in this section. All the 
cases are executed in GAMS 24.01 using a CPU Intel(R) Core(TM) i7 CPU 870@2.93GHz with RAM 
12.0Gb.  We have run three cases for the supply chain described in Part I, with the number of the 
components in each echelon and the numbers of motors shown in Table 1. Furthermore, we assume that 
the number of factories is fixed, while for the warehouses we consider all the locations as potential ones 
whose capacities can be expanded or shutdown except that warehouse J1 is installed at the beginning of 
time horizon because it operates as a main warehouse.  Case 1 is an illustrative problem with relative 



small scale, while cases 2 and 3 are based on real world industrial data. The model statistics of 3 single 
MINLP problems are shown in Table 2. 

Table 1 Size of the cases 

Component Case 1 Case 2 Case 3 
Factories 3 7 7 
Warehouse candidates 7 5 5 
Customers 27 27 27 
Standard motors 32 32 99 
Special motors 49 49 396 
Criticality levels 4 4 4 
Periods of time horizon 5 5 5 
 

Table 2 Model statistics 

Item Case 1 Case 2 Case 3 
Number of constraints 326,151 430,707 1,471,287 
Number of variables 190,414 236,853 807,713 
Number of binary variables 14,444 16,339 47,654 
 

Each of the models is solved with 5 algorithms. First, the model is solved with DICOPT as a single 
MINLP problem (MINLP). Then, the nonlinear terms are approximated by piecewise linearization with 2 
and 5 intervals respectively (MILP-2, MILP-5), and the MILP problem is solved by CPLEX. Next, the 
MINLP problem is solved by the approach proposed in Part I (AltNLPMILP). Finally, the problem is 
solved by the Lagrangean decomposition algorithm proposed in this Part II paper (LD).  

Case 1 

The objective values and CPU times required are shown in Table 3. 

Table 3 Objective values and CPU time required by different algorithms 

Name Optimal objective/$ Error/% CPU time (s) 
MINLP  No feasible solution － 12,159.839 
MILP-2 5747911.872 0.24 683.674 
MILP-5 5748118.909 0.24 10,086.244 
AltNLPMILP 5752005.0406 0.31 460.016 
LD (30 iterations) 5733962.14 0 551.918 

 

The iteration details of the LD results are shown in Figs. 5 and 6. 



 

Figure 5 Convergence of the lower and upper bound 

 

Figure 6 Convergence of multipliers of demand constraints of motor p1 with criticality k1 at period t 

In Fig. 5, it can be seen that the gap between the lower and upper bound is reduced to 0.003% at iteration 
7, and the CPU time required is about 130 seconds. In Table 3 it can be seen that the MINLP model 
cannot obtain any feasible solution after more than 3 hours. The CPU time required by the MILP models 
increase quickly as the number of intervals grows, but the accuracy cannot be improved. The CPU time of 
AltNLPMILP is about 2 thirds as long as MILP-2 with a slightly higher error (0.31% vs. 0.24%). The 
Lagrangean decomposition algorithm reaches the optimal solution faster in about 130 seconds. The 
convergence of several multipliers is illustrated in Fig. 6. 
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The capacity profiles of the 3 selected warehouses (J1, J3 and J7) are shown in Table 4, the cost details of 
the optimal solution obtained with the Lagrangean decomposition algorithm are shown in Figs. 7-10.  

Table 4 Capacity profiles of warehouses 

/SKUs Year 1 Year 2 Year 3 Year 4 Year 5 
J1 2000 2000 2000 2000 2000 
J3 40 40 40 40 40 
J7 50 50 50 50 50 

 

In this case, only J1, J3 and J7 are installed, where the initial capacity of J1 is much larger than the 
capacities of J3 and J7. 

 

Figure 7 Variable costs of warehouses for new motors 

The variable costs of warehouses for new motors are illustrated in Fig. 7, where the x-axis indicates time 
period, while y-axis indicates variable costs in dollars. The stock cost, safety stock cost and repair cost of 
warehouses are illustrated in Fig. 8-10, respectively. 



 

Figure 8 Mean stock costs of warehouses for modifying 

 

Figure 9 Safety stock costs of warehouses 

 



 

Figure 10 Repair cost of warehouses for special motors 

Case 2 

The objective values and CPU times required for case 2 are shown in Table 5. 

Table 5 Objective values and CPU time required by different algorithms 

Name Optimal objective/$ Error/% CPU time /s 
MINLP  6537842.475 5.40 32,288.415 
MILP-2 6354304.153 2.44 798.990 
MILP-5 6354304.153 2.44 86,020.932 
AltNLPMILP 6358672.248 2.51 530.108 
LD (30 iterations) 6202732.33 0 607.577 

 

The iteration details of the LD results are shown in Figs. 11 and 12. 



 

Figure 11 Convergence of the lower and upper bound 

 

Figure 12 Convergence of multipliers of demand constraints of motor p1 with criticality k1 at period t 

 

In Fig. 11, it can be seen that the gap between the lower and upper bound is reduced to 0.004% at iteration 
8, and the estimated CPU time required is 162 seconds. There are similar trend as in case 1.The capacity 
profiles for case 2 of the 3 selected warehouses (J1, J2 and J3) are shown in Table 6, the cost details of the 
optimal solution obtained with the Lagrangean decomposition algorithm are shown in Figs. 13-16.  
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Table 6 Capacity profiles of warehouses 

/SKUs Year 1 Year 2 Year 3 Year 4 Year 5 
J1 50000 50000 50000 50000 50000 
J2 50 50 50 50 50 
J3 50 50 50 50 50 

 

 

Figure 13 Variable costs of warehouses for new motors 

 

Figure 14 Mean stock costs of warehouses for modifying 

 

 



 

Figure 15 Safety stock costs of warehouses 

 

Figure 16 Repair costs of warehouses for special motors 

Case 3 

The objective values and CPU time required for case 3 are shown in Table 7. 

Table 7 Objective values and CPU time required by different algorithms 

Name Optimal objective/$ Error/% CPU time /s 
MINLP  No feasible solution － 360,123.004 
MILP-2 120349878.7579 11.25 10,871.289 
MILP-5 No feasible solution － out of memory 
AltNLPMILP 120657481.7045 11.53 19942.81 
LD (30 iterations) 108178792.52 0 20125.03 

 

The iteration details of the LD results are shown in Figs. 17 and 18. 



 

Figure 17 Convergence of lower and upper bound 

 

Figure 18 Convergence of multipliers of demand constraints of motor p1 withcriticality k1 at period t 

In Fig. 17, it can be seen that the gap between the lower and upper bound is reduced to 0.003% at iteration 
7, and the estimated CPU time required is 4696 seconds. There are similar trends as in case 1. Both 
MINLP and MILP-5 cannot find any feasible solution, and AltNLPMILP performs similar to MILP-2 
with about twice the CPU time. 

The capacity profiles for case 3 of warehouses (all the warehouses are selected) are shown in Table 8, the 
cost details of the optimal solution obtained with the Lagrangean decomposition algorithm are shown in 
Fig. 19-22. In this case, warehouse J5 is installed for repairing the used motors, no new motor is modified 
in warehouse J5. 



Table 8 Capacity profiles of warehouses 

/SKUs Year 1 Year 2 Year 3 Year 4 Year 5 
J1 50000 50000 50000 50000 50000 
J2 50 100 150 167.64 217.64 
J3 50 94.162 106.147 106.147 106.147 
J4 50 100 100 100 100 
J5 80 80 80 80 80 

 

 

Figure 19 Variable costs of warehouses for new motors 

 

Figure 20 Mean stock costs of warehouses for modifying 



 

Figure 21 Safety stock costs of warehouses 

 

Figure 22 Repair costs of warehouses for special motors 

 

To summarize the three cases, we can conclude that the Lagrangean decomposition algorithm can obtain 
the optimal solution efficiently. As the problem scale increases, the advantage becomes more apparent, 
especially for the problem with small feasible region. 

5 Conclusions 

The supply chain of electric motor is complex due to many decisions, especially the reverse flows, which 
results in a large scale MINLP problem, whose number of variables and equations can range from 
thousands to millions. Therefore, the solution of this type of problem is a challenging task. Lagrangean 
decomposition is a popular method for large scale problems, but the decomposition scheme depends on 
the problem structure. In this paper, we decompose the problem by warehouses. Given that warehouses 



share the demands of customers and capacities of factories, the corresponding constraints have to be 
dualized simultaneously. As a consequence, there are a large number of Lagrange multipliers, which are 
quite different in scale. To accelerate the convergence, a scaling scheme has been proposed. Furthermore, 
considering that the multipliers can be interpreted in an economic sense, we design a method to estimate 
initial values for them. Another challenge for the decomposition method is that the sizes of the 
subproblems are still quite large involving nonlinear terms and binary variables. An adaptive piecewise 
linearization method is proposed to approximate the nonlinear terms. To obtain feasible solutions, another 
adaptive piece-wise linearization is also presented. The test results on illustrative and real world industrial 
problems show that the Lagrangean decomposition algorithm is effective and efficient, while the single 
MINLP is hard to solve and the MILP approximation is only computationally feasible with a few 
intervals. The AltNLPMILP of Part I performs similarly to the MILP approximation. The advantage of 
the proposed method is especially apparent for large scale and highly constrained problems. That is, if 
there are many motors to be dealt with in the supply chain and few potential warehouses to be selected 
from, the proposed Lagrangean decomposition method is more competitive. 
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